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Abstrset. The Green function o f  a tight-binding model with mixed impurities is calculated 
exactly. The spectral properlies o f  the one-dimensional lattice, including both extended 
and localized states, are also analysed exactly. We find at most two localized states which 
are always non-degenerate. The density of states per site in the continuum is calculated. 
Using a constructive procedure we obtain the localized eigenfunctions for the infinite and 
semi-infinite chain. Some results for three-dimensional lattices are presented. 

The effects of defects on the spectrum of elementary excitations of crystals have been 
examined extensively [ 11. Using the standard perturbation expansions for the Green 
function the properties of systems with few defects can be exactly expressed in terms 
of the known results in the perfect case. Thus, crystals containing only a low concentra- 
tion of such defects can be interpreted in terms of those properties. These effects must 
be reproduced by disordered systems in the dilute (low concentration of defects) limit. 

Recently, very much attention was given to the influence of off-diagonal disorder 
and its correlations with diagonal disorder in the density of states and transport 
properties of electronic systems, described by a tight-binding Hamiltonian [Z]. 
However, up to now, very little has been done in examining in detail the effects of a 
single defect containing both diagonal and off-diagonal impurities. Any exact result 
on this problem, even in a very simple model, will be very useful in the implementation 
of approximate calculation schemes for strongly disordered systems. In this letter, we 
consider the most simple defect of this kind, that is, a tight-binding Hamiltonian 
containing one impure energy site and an impure hopping constant between this site 
and one nearest neighbour (mixed impurities). We analyse exactly the spectral proper- 
ties, and calculate the density of states (DOS). 

We consider a tight-binding (TB) Hamiltonian of the form 

H = H,+H, (1) 

Ho=EoCIR)(RI+ Vo C IR)(R+A,I (2) 

HI = EII) (11 + V [  I I )  ( I  + SI + I + I! + 6) (111 (3) 

with 

R R,i 

where each state IR) corresponds to a Wannier orbital centred at the site R. The sites 
{ R }  form an arbitrary Bravais lattice of dimension d. The vectors {Aj; i = 1 ,2 , .  . . , q )  
are lattice vectors which connect each site with its nearest neighbours, and q is the 
coordination number of the lattice. Ha describes a homogeneous TB model, with the 
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electronic energy of an isolated orbital and Vo the transition probability amplitude 
(hopping constant) between any pair of nearest-neighbour sites (we will take Vo=O). 
HI is the contribution of the impurities to the energy, with E = E'-  and V =  V'- V,; 
E' is the impure site energy associated with the site I, and V' is the impure hopping 
constant between the particular sites I and I + 6;  6 is an arbitrary and fixed vector 
selected from the set {A;). 

The Green functions Go(z) and G(z) associated with Ho and H respectively are 
defined by 

( Z  -H)G(z) = I (4) 

where z is a complex number with Re z = E and Im z = q. On the real axis we must 
introduce the side limits 

G*(E)=  l i qG(E* iq ) .  ( 5 )  
7 - 0  

The Hamiltonian H, given by (2) does not have discrete eigenvalues due to the 
translation invariance, and the continuous spectrum (band energy of extended eigen- 
states) is the branch cut of Go. Go has been calculated for a great variety of Bravais 
lattices [4-81. The continuous spectrum of H is the same as the continuous spectrum 
of H, [9]. 

In order to calculate G(z)  in terms of G,(z) we introduce the t-matrix T ( z )  by: 
G=Go+GoTGo. It is given in terms of HI by [l] 

T=H,(I-GoH,)-'  ( 6 )  

From (6) we find after some matrix algebra 

1 
0 

G=G~+-GO[(I)(E + V*(flGolf))(fl+ (I+ 6) V*(flGoll)(f+~I 

+ II)( V - Vz( I + 61G,Jl))(I+ 61 

+ II + 6)( V - V2(1 + 6lGoll))( 11160 (7) 

with 

The analytical structure of G(z), which contains all the properties of the spectrum of 
H, has been made explicit in S(z). It is worthwhile to note that @ ( z )  is obtained from 

S(z) =det[9 - %0(z)2t1] (9) 

where go and XI are the restriction of the operators Go and HI respectively, to the 
subspace spanned by the Wannier states related to the impure sites and those nearest- 
neighbour sites which are connected by impure hopping constants. 

For d = 1 we have a simple chain. In this case the Wannier basis can he written as 
( Im); m =0, + I ,  *Z,. . . }. The site I is the impure site and we have an impure hopping 
constant V' between the sites I and 1 + 1 .  

The Green function for the homogeneous problem G,(z) has the following matrix 
elements 

(mlG,ln)= Fp'"-"' (10) 
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where 

p = x - R  R = C  

and Jx'-l denotes the square root whose imaginary part has the same sign as that 

continuous spectrum of the model (branch cut of Go) corresponds to 1x1 s 1 with x 
real. We use the notation: G(m,  n ) - (mlGln)  for the matrix elements of the operator 
G. Taking matrix elements of (4) and using (1)-(3) we obtain the recursion relations 
for the matrix elements of G 

of !m{x) (iz which CPSC thc ..I! p'cs of ."F? 2nd x ha.:c thc same sign). E.C 

(z-E' )G( I ,  h ) -  V'G(I+l, h ) -  VoG(I- 1, h ) = &  (11) 

( ~ - - E ~ ) G ( I + I , ~ ) - V ~ G ( I + ~ ,  h)-V'G(I, h ) = & + , h  (12) 

(z--Eo)G(m, h ) -  Vo[G(m + 1, h ) +  G(m - 1, h)] = Smh.  (13) 

for all h. And for m # I, I + 1 and for all h 

Similarly from the equation G(z - H) = I we obtain for all m 

( z  - d)G(h, I )  - V'G(m, I +  1) - VoG(m, I -  1) =a,, (14) 

(z-Eo)G(m, I + l ) -  VoG(m, l+2)-  V'G(m, I)=S,,,,+, (15) 

and for h # I, I + 1 

( z  - EJG( m, h )  - V,[ G ( m ,  h + 1) + G ( m ,  h - l)]  = Smh. (16) 

Therefore from (11)-(16) all the matrix elements of G can he obtained from the three 
elements G(l,I),  G(I+ l , I+ I ) ,  and G(I,I+l).  

From (7) and (8) we obtain 

G ( I , I ) = F / O  (17) 

! ! S )  

(19) 

C ( f + l ,  !+!)=-[F+F2c(p2-!)j  1 
0 -\. 

F 
0 G(I, I+ 1) =- [p+FV(p'- l ) ]  

0 = 1 - EF -2VpF+ V2(p2 - 1)F'. 

The diagonal matrix elements of G are: 

if n a l  
[G(I,  I)-F]p-'" if n < O .  (21) 
[G(I+ 1, I+ 1)-F]p2("-') 

G ( l + n , I + n ) = F +  

All the simple poles of G are on the real axis, with 1x1 > 1. Defining the parameters 
a'= V'/ V, and S 5 ~ / 2  Vo the equation 0 = 0 in equivalent to 

(a'2+ l )R  = (a'2 - 1 ) ~  + 28. (22) 

We find at most two solutions of equation (22). Putting 

(23) 
1 

2a 
X' = 7 [ (a,2 - 1)6 f (a"+ l ) m ]  
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X + > 1  and X-<- l ;  moreover: 
X +  is a solution if S > - y  

X -  is a solution if 6 < y (24) 

where y =$ (a'*- I). We can thus distinguish different regions in the parameter-space 
(a', 6) according to the number of localized states present, as depicted in figure 1. 
Figure 2 shows the energy of the localized eigenstates as a function of a' for some 
values of S. From (20) and (21) we calculate the residue of G(I+n, I +  n) at the poles 
X', and summing over all sites n we obtain Tr[Res{G(X*))] = 1. Hence, the levels 
X" are non-degenerate. 

6 

Figure I. Regions of localized states in the space (*',a) for the ID case. X+ (x-) 
corresponds to a localized eigenstate above (below) the band. In the central region wnfined 
by the parabolic curves there is no localization. The oriented path shown at the right corner 
m"s for s = 8. 

i 
-1  - 

6 2 1  

6 ~ 0  
6.0.5 

-2' 
0 1 2 3 

n - 
Figure 2. Normalized energy x of the localized eigenstates as a function of a' for the ID 

case. The band is located at 1x1 6 1. 
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Let us analyse two simple particular cases. Firstly, for a'= 1 we recover the results 
of the single diagonal impurity case (one impure site-energy). In figure 1 this case 
corresponds to the vertical line a'= 1. We see that there is always only one localized 
eigenstate, without restriction on the parameter 8, with energy J1+62 if S > O  and 
-di??? if 6 <O. Secondly, for S = 0 we get a single off-diagonal impurity case (one 
impure hopping constant). In figure 2 this case corresponds to the S = O  axis. Note 
that for 1 we do not have localized eigenstates. For 1 0 ' 1  > 1 we have always two 
symmetrical localized states with energies: 

We use a simple constructive procedure [lo] to derive the localized eigenfunctions 
which also leads to the localization length, a quantity of physical interest. 

Expanding 
m 

Ih)= E c.14 
n=-m 

the Schrodinger equation corresponding to the Hamiltonian ( I )  becomes 

XC" =!(C.+,+C.-,) forall n # l , l + l  

XC,,, =f (a 'C ,+  Cl,,) 

(x- S)C, =f (C, - ,+  a'C,+,). 

If we propose 

ecl("-l) if n s l  
C"{@ if n > l + l  

with parameters q and o, then 

for x = X +  
for x = x-= 

+ 

where 

1 
a 

o* = 7 [ -8 * -1 

Therefore 

X* = *cosh(q*). 

Now the physical meaning of the restrictions on the parameters (a', 8 )  (equation (24)) 
becomes clear. It can be seen from (29) and (30) that these restrictions ensure the 
localized character of the solutions given by (27), i.e. qiZO. 



L1410 Letter to the Editor 

We see immediately from (32) that the localization length l/q' diverges at the 
band edges with an inverse power law whose exponent is i. This kind of behaviour 
can be observed in other one-dimensional localization problems [ll]. 

The density of states per site, for energies inside the hand, is given by 

(33) 
1 

p(x,m)=F--Im{G*(m,m)]. 
57 

From (21) we obtain 

I -[(I -x2)y+ y2+ S(S +2yx) cos (2n+(x ) ) ] )  

if n < 0, and 

(34) 

xsin(2(n - I)+(x)) 

+ (y(1 -x2+ y) + S(6 +2yx+2(1 -x')(x- 8))) 

(35) 

if n 3 1, where 

n = (1  - x')( 1 + 2y) + y2+ S( S + 2yx) (36) 

and +(x) satisfies: c o s + ( x ) = X , s i o . Q W = + ~ ~ .  ''' 
In figure 3 we shoy,p(x, /).and p(x ,  /+ 1) for $\nd S'following the path depicted 

in figure 1 (8 = 3/8). Note that the DOS per site diverges at the band edges when the 
localized states appear, i.e. when the path reaches the parabolic frontiers (S = *y). 
From (34) and (35) we get the asymptotic behaviour of p ( x ,  m) at the band edges IzI + 1: 

if 6 = - y  

~ ( x ,  m ) -  (37) 
if S = y. 

The total density of states results 

( 1  -x')(1+2y)-y+S(S - (1 -  y)x) 
d X )  = P O b )  (1 -x2)( 1 +2y)+ y2+ S(S +2yx) ' 

Following [12], a resonance eigenstate centred at the energy X, (X, belonging to 
the band) exist if 

Re{@+(X,)] = O  (39) 

and 



4 -  

0 

8 -  

- T 4 .  - 
h- 
2 Q~ 

L1411 

a'= 0 .6  
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ovcr thc path depincd in Agurc 2 ( 6  = 8 , .  For CI '  = 0.5, a12 the path crosses thr parabolic 
EUWCI and a dircrcrc level is  rplil off the band (venical brokcn lines) 

where r is called the width of the resonance state. From (20) we obtain 

X(Y+S) @*(x) = 1 + y f i  - J1-xz' 
It is immediate that the resonance state does not exist. It is interesting to compare this 
with the problem of a chain with two diagonal impurities located at the Ith and mth 
sites with strengths cl and 

@ =  I - (E ,+EJF+E,E ,F~( I  -pl'-ml). (42) 

respectively. From (9) we get in this case 

If we consider m = I +  1 then 

with 6i = ~ , / 2  V,, i = 1.2. So it is possible to  find a resonance eigenstate centred at the 
energy X, = S,S2 - 1 with width 

SI + S2 - 6,S2 
J(Z /S ,S , )  - 1 

r=zv, 

if 0<6,6,<2 and r>O. 
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We now consider a more complex situation: The semi-infinite chain with mixed 
impurities, where 

0 0 

Hn=En 1 In)(fllf vo [In-l)(nl+ln)(n-111 (43) 

Hr = E l o ) ( o l +  (v"- ~ o ) [ ~ - ~ ) ( ~ ~ + ~ ~ ) ( - ~ ~ ]  (44) 

n--m n=-m 

i.e., the diagonal impurity E' is located at the end of the chain (site 0), and the 
off-diagonal impurity V" is the hopping constant between the sites 0 and -1. 

Using the expansion (25) for the localized eigenfunctions with n G 0 we obtain 

with q given by (28) and 
q* = In[*a"a*] 

a*=; [S 
a 

(46) 

(47) 

where a"- V"/ V,. Then we re-obtain (32). The condition of localization q * >  0 results 
in 

x+ is a solution if 8 > 1 -fa"' 

x- is a solution if 6 <$a"'- 1. (48) 

As a particular case we consider the semi-infinite chain with only a diagonal impurity 
a"= 1. This problem has only one localized state with a=26 for IS);. The energy of 
this state will be above or below the band according to the sign of S. The corresponding 
inverse of the localization length is q = In(2)SI). 

The semi-infinite chain problem is equivalent to the infinite chain with mixed 
impurities after taking a'=O. For example, for the end site of the chain (taking I = O  
and a'= 0 in (34)) we obtain for the DOS per site 

(49) 
J1-x2 

0 4  S(S-x) l '  P ( X ,  0) =4Tv ['+ 

Again we have the singular behaviour given by (37) of the DOS per site at the band 
edges when the localized state appears. 

Some of the results obtained for the one-dimensional model are also present in 
lattices of higher dimension. It is worth noting that the parabolic curves in the 
parameter-space (a', S), like the ones depicted in figure 1, are present for many Bravais 
lattices. A localized state appears at the band edge when one crosses one of these 
curves, that is to say the equation S(x) = 0 has a solution at one of the hand edges. 
As long as the matrix elements of the Green function Go are finite at the hand edges 
(square lattice in d = 2, sc and bcc lattices in d = 3, etc) (8) shows that the equation 
O(x)=O gives the parabolic shape of the curves. 

In order to fix ideas we will consider from now on a simple cubic lattice. The TB 
band for the homogeneous problem at the sc lattice is located in the interval 1x1 3. 
To calculate 0 from (8) we choose the origin of the lattice as the impure site I = (O,O,O) 
and we take 6 = (1,0,0). The diagonal elements of Go are given by 
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where 9 ( x )  is the dimensionless diagonal matrix element of the Green function 'for 
the sc lattice usually tabulated [13]. The non-diagonal element present in (8) can be 
expressed as [4] 

so that 

@(x) = 1 - S 9 ( x )  - a 4(x)'+g [' F(x) -:I2 (52) 4 3  

where a = V/ Vo = a'- 1. The parabolic curves in the parameters space for the sc lattice 
are given by 

where g = 4 ( x  = 3).  For x>  3 (x < -3) the equation O(x) = O  has at most one root 
above (below) the hand. From the general asymptotic behaviour of go(z )  [3] we see 
that lim,,,, @(x) = 1, thus the sign of 8 at the band edge determines if a localized 
state exists, i.e. for O(x = 3) < O(@(x = -3) < 0) we have localized state with energy 
X'(X-)  above (below) the band. Then we can distinguish the same kind of regions 
in the parameter space as in the one dimensional model. In figure 4 we show a numerical 
calculation of the energy of the localized eigenstate for two values of S.  

I 1  2- 
-8 - 6  - 4  -1 0 2 L 6 8 0 2 1 

m' LI' 

Figure 4. Normalized energy x for the localized (full linea) and resonant (broken lines) 
eigcnstates for the sc lattice. The band is located at 1x1 s 3 ,  ( a )  6 =0, ( b )  6 = 2. 

For the sc lattice we find that the equation Re{@} = 0 will have solutions inside the 
band depending on the values of the parameters a' and S. For determined regions in 
the parameter space some of these solutions correspond to resonance eigenstates, 
according to the condition (40). We find that a resonance eigenstate appears at the 
band edge together with a localized eigenstate and goes to the centre of the band when 
varying a' and keeping S constant; see the broken lines in figure 4. All the numerical 
results were done with the Chebyshev approximate formulas for S(x) [13]. 
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